If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(n^2)-4(n)+5=n
We move all terms to the left:
(n^2)-4(n)+5-(n)=0
We add all the numbers together, and all the variables
n^2-5n+5=0
a = 1; b = -5; c = +5;
Δ = b2-4ac
Δ = -52-4·1·5
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{5}}{2*1}=\frac{5-\sqrt{5}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{5}}{2*1}=\frac{5+\sqrt{5}}{2} $
| (n^2)4(n)+5=n | | (x-3)^3-2(x-1)=x(x-2)^2-5x^2 | | -4x^2+120x=0 | | 3^x-9=16^5x | | 6s-28+9s-76=180 | | 6s-28+9s–76=180 | | 9s–76+6s–28=180 | | 6u-2+5u+17=180 | | -4=p/20 | | 1a+3=8a-39 | | X(2x)=120 | | 1x-14=2x-67 | | 4u-21=6u-61 | | 1c+24+5c-84=180 | | 2w+8=4w-32 | | 7x+6-3x-10=180 | | 1b=2b-30 | | 1z+4z-80=180 | | 4s=7s-51 | | 2a-27=5a-93 | | 1p+63=2p | | 2p=1p+63 | | 12q-22=86 | | 1/2x+10=3x | | (x=20)/2=3x | | (3x-14)/2=x | | x+20=2x×4 | | 1c-8=4c-38 | | 9+x=2-x | | ×2+y2-10×+2+199=0 | | 3x+9+90+8x+4=180 | | X(x+4)=(x+2)^2 |